论文标题
在数据驱动的大规模动力学系统的数据驱动的降低订单建模中保存拉格朗日结构
Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems
论文作者
论文摘要
这项工作提出了一种非感染物理性的方法,用于学习拉格朗日系统的减少阶模型(ROM),其中包括非线性波方程。现有的基于投影的模型还原方法通过将全阶模型(FOM)的Euler-lagrange方程投影到线性子空间中,从而构建了结构结构的Lagrangian ROM。该盖尔金投影步骤需要有关FOM中拉格朗日运营商的完整知识,并完全访问计算机代码。相比之下,提出的拉格朗日操作员推理方法将机械师嵌入了操作员推理框架中,以开发一种数据驱动的模型减少方法,该方法保留了基础的拉格朗日结构。所提出的方法利用了管理方程式的知识(而不是其离散化)来定义拉格朗日ROM的形式和参数化,然后可以从投影的快照数据中学到。该方法不需要访问FOM操作员或计算机代码。数值结果表明,Lagrangian操作员推断了Euler-Bernoulli束模型,正弦 - 戈登(非线性)波方程以及具有779,232度自由度的软机器人鱼尾的大规模离散化。博学的拉格朗日ROM概括了,因为它们可以准确地预测远远超出训练时间间隔的物理解决方案以及看不见的初始条件。
This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of Lagrangian systems, which includes nonlinear wave equations. Existing intrusive projection-based model reduction approaches construct structure-preserving Lagrangian ROMs by projecting the Euler-Lagrange equations of the full-order model (FOM) onto a linear subspace. This Galerkin projection step requires complete knowledge about the Lagrangian operators in the FOM and full access to manipulate the computer code. In contrast, the proposed Lagrangian operator inference approach embeds the mechanics into the operator inference framework to develop a data-driven model reduction method that preserves the underlying Lagrangian structure. The proposed approach exploits knowledge of the governing equations (but not their discretization) to define the form and parametrization of a Lagrangian ROM which can then be learned from projected snapshot data. The method does not require access to FOM operators or computer code. The numerical results demonstrate Lagrangian operator inference on an Euler-Bernoulli beam model, the sine-Gordon (nonlinear) wave equation, and a large-scale discretization of a soft robot fishtail with 779,232 degrees of freedom. The learned Lagrangian ROMs generalize well, as they can accurately predict the physical solutions both far outside the training time interval, as well as for unseen initial conditions.