论文标题
病变帕斯特:医学图像的一次性异常检测
LesionPaste: One-Shot Anomaly Detection for Medical Images
论文作者
论文摘要
由于手动注释医学图像的成本很高,尤其是对于大型数据集,因此仅通过具有正常数据的培训模型来探索异常检测。缺乏真实异常的先验知识是限制先前异常检测方法的主要原因,尤其是在医学图像分析领域中。在这项工作中,我们提出了一个单发异常检测框架,即病变型,该框架利用单个带注释的样品中的真实异常,并合成人工异常样品进行异常检测。首先,通过将增强量应用于随机选择的病变贴片来构建病变库。然后,将混合物用于正常图像中随机位置的病变库粘贴斑块,以合成异常样品进行训练。最后,使用合成异常样本和真实的正常数据训练了分类网络。在两个具有不同类型异常的公共医疗图像数据集上进行了广泛的实验。在这两个数据集上,我们提出的病变 - 在很大程度上优于几个最先进的无监督和半监督的异常检测方法,并且与完全监督的对应物相当。要注意的是,病变帕斯特在检测早期糖尿病性视网膜病时甚至比全面监督的方法更好。
Due to the high cost of manually annotating medical images, especially for large-scale datasets, anomaly detection has been explored through training models with only normal data. Lacking prior knowledge of true anomalies is the main reason for the limited application of previous anomaly detection methods, especially in the medical image analysis realm. In this work, we propose a one-shot anomaly detection framework, namely LesionPaste, that utilizes true anomalies from a single annotated sample and synthesizes artificial anomalous samples for anomaly detection. First, a lesion bank is constructed by applying augmentation to randomly selected lesion patches. Then, MixUp is adopted to paste patches from the lesion bank at random positions in normal images to synthesize anomalous samples for training. Finally, a classification network is trained using the synthetic abnormal samples and the true normal data. Extensive experiments are conducted on two publicly-available medical image datasets with different types of abnormalities. On both datasets, our proposed LesionPaste largely outperforms several state-of-the-art unsupervised and semi-supervised anomaly detection methods, and is on a par with the fully-supervised counterpart. To note, LesionPaste is even better than the fully-supervised method in detecting early-stage diabetic retinopathy.