论文标题
大气中的群众损失从极端近距离的行星逃脱
Mass loss by atmospheric escape from extremely close-in planets
论文作者
论文摘要
我们探索质量损失率最高的近距离行星的大气逃脱。首先,我们定位从恒星X射线和紫外线驱动的逃生到快速的Roche Lobe溢出的过渡,一旦大气中的10-100 NBAR压力水平到达Roche Lobe。当沿可见的表面压力水平与持续的Roche潜力一致的替代半径与极性半径的比率为x/z〜 $ \ gtrsim $ 〜1.2时,Jovian Planets的X/Z〜 $ 〜1.2(Mp〜 $ \ gtrsim $ 〜100 m $ _ $ _ {\ gtrs)和x/z $ 〜gtrs $ 〜gtrss, ($ m_p \ $〜$ 〜10--100 m $ _ {\ erach} $)。在一个类似太阳的恒星周围,该制度适用于轨道时期的时间不到两天,而行星的半径约为3--14 r $ _ {\ arter} $。我们的结果与已知的过境行星的特性一致,并可以解释已知系外行星种群中乔维亚次层的一部分。其次,我们提出了大气逃脱的详细数值模拟,从天王星或海王星等行星上逃脱,绕着像太阳一样的恒星绕行,该恒星支持上述结果,并指出了热木星和郡下行星之间有趣的定性差异。我们发现,具有太阳金属氢和氦信封具有比典型的热木星相对较高的高层大气层,其电离分数较低,并且逃脱分子的丰度较高。这与现有的紫外线紫外线观测值是一致的,它可能会提供一种使用未来的观测值和模型来区分太阳金属性气氛与较高金属气氛的方法。
We explore atmospheric escape from close-in exoplanets with the highest mass loss rates. First, we locate the transition from stellar X-ray and UV-driven escape to rapid Roche lobe overflow, which occurs once the 10-100 nbar pressure level in the atmosphere reaches the Roche lobe. Planets enter this regime when the ratio of the substellar radius to the polar radius along the visible surface pressure level, that aligns with a surface of constant Roche potential, is X/Z~$\gtrsim$~1.2 for Jovian planets (Mp~$\gtrsim$~100 M$_{\Earth}$) and X/Z~$\gtrsim$~1.02 for sub-Jovian planets ($M_p \approx$~10--100 M$_{\Earth}$). Around a sun-like star, this regime applies to orbital periods of less than two days for planets with radii of about 3--14 R$_{\Earth}$. Our results agree with the properties of known transiting planets and can explain parts of the sub-Jovian desert in the population of known exoplanets. Second, we present detailed numerical simulations of atmospheric escape from a planet like Uranus or Neptune orbiting close to a sun-like star that support the results above and point to interesting qualitative differences between hot Jupiters and sub-Jovian planets. We find that hot Neptunes with solar metallicity hydrogen and helium envelopes have relatively more extended upper atmospheres than typical hot Jupiters, with a lower ionization fraction and higher abundances of escaping molecules. This is consistent with existing ultraviolet transit observations of warm Neptunes and it might provide a way to use future observations and models to distinguish solar metallicity atmospheres from higher metallicity atmospheres.