论文标题
Koopman的方法估计动物动作在未知子曼群上
Koopman Methods for Estimation of Animal Motions over Unknown Submanifolds
论文作者
论文摘要
本文介绍了针对某些类型的动物运动模型的正向运动学图的数据依赖性近似。假定在低维配置$ q $上支持运动,该动作经常嵌入高维欧几里得空间$ x:= \ mathbb {r}^d $。本文介绍了一种从未知配置submanifold $ q $估算向前运动学的方法,以$ n $二维欧几里得空间$ y:= \ mathbb {r}^n $的观测。在已知的内核函数方面,在环境空间$ x $上定义了已知的复制核Hilbert Space(RKHS),并使用在环境空间$ x $上定义的已知内核进行计算。使用$ x $上已知的内核定义的Koopman操作员的一定数据依赖性近似来构建估计值。但是,在限制对未知歧管$ q $的限制空间中,研究了近似值的收敛速率。强劲的收敛速率是根据未知配置歧管中样品的填充距离得出的,只要新颖的规律性结果适用于Koopman操作员。此外,我们表明,在某些情况下,可以将收敛速率应用于扩展动态模式分解(EDMD)方法产生的估计值。我们说明了模拟数据的估计值以及在运动捕获实验中收集的样品的特征。
This paper introduces a data-dependent approximation of the forward kinematics map for certain types of animal motion models. It is assumed that motions are supported on a low-dimensional, unknown configuration manifold $Q$ that is regularly embedded in high dimensional Euclidean space $X:=\mathbb{R}^d$. This paper introduces a method to estimate forward kinematics from the unknown configuration submanifold $Q$ to an $n$-dimensional Euclidean space $Y:=\mathbb{R}^n$ of observations. A known reproducing kernel Hilbert space (RKHS) is defined over the ambient space $X$ in terms of a known kernel function, and computations are performed using the known kernel defined on the ambient space $X$. Estimates are constructed using a certain data-dependent approximation of the Koopman operator defined in terms of the known kernel on $X$. However, the rate of convergence of approximations is studied in the space of restrictions to the unknown manifold $Q$. Strong rates of convergence are derived in terms of the fill distance of samples in the unknown configuration manifold, provided that a novel regularity result holds for the Koopman operator. Additionally, we show that the derived rates of convergence can be applied in some cases to estimates generated by the extended dynamic mode decomposition (EDMD) method. We illustrate characteristics of the estimates for simulated data as well as samples collected during motion capture experiments.