论文标题
差异建模框架:学习缺失物理学,建模系统残留物以及确定性和随机效果之间的歧义
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
论文作者
论文摘要
基于物理和第一原理模型遍及工程和物理科学,从而可以以规定的精度对复杂系统的动力学进行建模。用于得出管理方程的近似值通常会导致系统的基于模型和基于传感器的测量结果之间的差异,从而揭示了方程式的近似性质和/或传感器本身的信噪比。在现代动力学系统中,模型和测量之间的这种差异会导致量化差,通常会破坏产生准确和精确的控制算法的能力。我们引入了一个差异建模框架,以识别缺失的物理学并使用两种不同的方法来解决模型测量不匹配:(i)通过学习一个模型,用于用于系统的状态空间残差的演变,(ii)通过发现确定性动态误差的模型。无论采用什么方法,都可以使用一个通用的数据驱动模型发现方法。方法的选择取决于对差异建模,传感器测量特征(例如,数量,质量,解决方案)的意图(例如机械性解释性),以及实用应用所施加的约束(例如,使用数据驱动的模型套件,使用数据驱动的模型套件对每个持续的动态系统的构建构建构建构建构建构建构建,直到vary vary noise noise noise noise noise sartios the weise noise saltios the weise shrotplios te ye Profios te ye Prowios te ye Prof Prom Provios te Ye Provios te Ye Provios te YE PRASTIOS。差异建模方法取决于摘要,如果真正的动力学是未知的(即不完善的模型),则应学习动态空间中缺少物理的差异模型
Physics-based and first-principles models pervade the engineering and physical sciences, allowing for the ability to model the dynamics of complex systems with a prescribed accuracy. The approximations used in deriving governing equations often result in discrepancies between the model and sensor-based measurements of the system, revealing the approximate nature of the equations and/or the signal-to-noise ratio of the sensor itself. In modern dynamical systems, such discrepancies between model and measurement can lead to poor quantification, often undermining the ability to produce accurate and precise control algorithms. We introduce a discrepancy modeling framework to identify the missing physics and resolve the model-measurement mismatch with two distinct approaches: (i) by learning a model for the evolution of systematic state-space residual, and (ii) by discovering a model for the deterministic dynamical error. Regardless of approach, a common suite of data-driven model discovery methods can be used. The choice of method depends on one's intent (e.g., mechanistic interpretability) for discrepancy modeling, sensor measurement characteristics (e.g., quantity, quality, resolution), and constraints imposed by practical applications (e.g., modeling approaches using the suite of data-driven modeling methods on three continuous dynamical systems under varying signal-to-noise ratios. Finally, we emphasize structural shortcomings of each discrepancy modeling approach depending on error type. In summary, if the true dynamics are unknown (i.e., an imperfect model), one should learn a discrepancy model of the missing physics in the dynamical space. Yet, if the true dynamics are known yet model-measurement mismatch still exists, one should learn a discrepancy model in the state space.