论文标题
一种可自适应控制可变形镜的新方法
A novel method for adaptive control of deformable mirrors
论文作者
论文摘要
对于足够宽的应用控制信号(控制电压),MEM和压电可变形镜(DMS)表现出非线性行为。非线性行为在非线性执行器耦合,非线性执行器变形特征以及压电DMS中表现出来。此外,在许多情况下,DM行为可能会随着时间的推移而发生变化,这需要根据观察到的数据来更新DM模型的过程。如果未正确建模,并且在设计控制算法,非线性和随时间变化的DM行为时未考虑,则可以显着降低自适应光学(AO)系统的可实现的闭环性能。 DM控制的广泛使用的方法基于影响矩阵形式的预估计的线性时变DM模型。通常,这些模型在系统操作期间不会更新。因此,当非线性DM行为通过具有较大操作范围的控制信号激发,或者当DM行为随时间变化时,依靠线性控制方法的最新DM控制方法可能无法产生AO系统的令人满意的闭环性能。在这些关键事实的推动下,我们提出了一种用于数据驱动DM控制的新方法。我们的方法将一种简单的开环控制方法与递归最小二乘法的方法结合在一起,用于动态更新DM模型。 DM模型正在不断根据动态更改DM操作点进行更新。也就是说,提出的方法在系统操作过程中更新了控制操作和DM模型。我们在带有140个执行器的波士顿微型MEMS DM上实验验证了这种方法。该手稿中报道的初步实验结果证明了使用开发的DM对照方法的良好潜力。
For sufficiently wide ranges of applied control signals (control voltages), MEMS and piezoelectric Deformable Mirrors (DMs), exhibit nonlinear behavior. The nonlinear behavior manifests itself in nonlinear actuator couplings, nonlinear actuator deformation characteristics, and in the case of piezoelectric DMs, hysteresis. Furthermore, in a number of situations, DM behavior can change over time, and this requires a procedure for updating the DM models on the basis of the observed data. If not properly modeled and if not taken into account when designing control algorithms, nonlinearities, and time-varying DM behavior, can significantly degrade the achievable closed-loop performance of Adaptive Optics (AO) systems. Widely used approaches for DM control are based on pre-estimated linear time-invariant DM models in the form of influence matrices. Often, these models are not being updated during system operation. Consequently, when the nonlinear DM behavior is excited by control signals with wide operating ranges, or when the DM behavior changes over time, the state-of-the-art DM control approaches relying upon linear control methods, might not be able to produce a satisfactory closed-loop performance of an AO system. Motivated by these key facts, we present a novel method for data-driven DM control. Our approach combines a simple open-loop control method with a recursive least squares method for dynamically updating the DM model. The DM model is constantly being updated on the basis of the dynamically changing DM operating points. That is, the proposed method updates both the control actions and the DM model during the system operation. We experimentally verify this approach on a Boston Micromachines MEMS DM with 140 actuators. Preliminary experimental results reported in this manuscript demonstrate good potential for using the developed method for DM control.