论文标题
牛顿和非牛顿流体流动的对称性在发散和收敛的平面通道中
Symmetry of the Flows of Newtonian and Non-Newtonian Fluids in the Diverging and Converging Plane Channels
论文作者
论文摘要
提出了研究各种层状通道(扩散器和混淆者)中具有较小通道(分化和收敛角度)的各种层流方向的结果。基于求解Navier-Stokes方程的数值模拟,获得了粘性不可压缩流体的结果。该论文介绍了有关从固定的 - 对称到固定的 - 不对称和非平稳的结果的变化的结果,而在扩散器和混淆中,依赖于雷诺数的数字。这些流程度在平面扩散器中存在的存在范围,具体取决于牛顿,伪塑料和使用Ostwald-de waele功率法律的雷诺数,用于粘度。显示了扩散器中的流动型从对称稳态到不对称的稳定状态,以及依赖雷诺数的非对称非稳态模式的过渡。在牛顿和非牛顿流体的情况下,确定这些流量模式的存在范围的雷诺数的值。
The results studying various laminar flow regimes in diverging and converging plain channels (diffuser and confusor) with a small opening angle of channels (diverging and converging angles) are presented. The results are obtained for a viscous incompressible fluid by numerical simulation based on solving the Navier-Stokes equations. The paper presents the results concerning the change in the nature of flows from stationary - symmetric to stationary - asymmetric and to non-stationary in the diffuser and confusor in dependence on the Reynolds number. The ranges of existence of these flow regimes in plane diffusers and confusors depending on the Reynolds number for Newtonian, pseudo plastic and dilatants fluids with the Ostwald-de Waele power law for viscosity are numerically found. The transitions of flow regimes in the diffuser from symmetric steady state to the asymmetric one and to the asymmetric unsteady mode in dependence on the Reynolds number are shown. The values of Reynolds number that determine the existence ranges of these flow modes in the cases of Newtonian and non-Newtonian fluids are given.