论文标题
当单个站点分布是卷积与库奇分布的卷积时,状态综合密度的平稳性和安德森模型的水平统计数据
Smoothness of integrated density of states and level statistics of the Anderson model when single site distribution is convolution with the Cauchy distribution
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work we consider the Anderson model on $\ell^2(\mathbb{Z}^d)$ when the single site distribution (SSD) is given by $μ_1 * μ_2$, where $μ_1$ is the Cauchy distribution and $μ_2$ is any probability measure. For this model we prove that the integrated density of states (IDS) is infinitely differentiable irrespective of the disorder strength. Also, we investigate the local eigenvalue statistics of this model in $d\ge 2$, without any assumption on the localization property.