论文标题
Koopman操作员用于时期可靠性分析
Koopman operator for time-dependent reliability analysis
论文作者
论文摘要
非线性动力学系统的时间依赖性结构可靠性分析是非平凡的。随后,大多数结构可靠性分析方法的范围仅限于时间独立的可靠性分析。在这项工作中,我们提出了一种基于Koopman操作员的方法,用于对非线性动力学系统的时间依赖性可靠性分析。由于Koopman表示可以将任何非线性动力学系统转换为线性动力学系统,因此无论非线性或混乱行为如何,都可以无缝地获得动力学系统的时间演变。尽管Koopman理论已经很久以前就流行了,但识别固有的坐标是一项艰巨的任务。为了解决这个问题,我们提出了一个端到端的深度学习体系结构,该体系结构可以学习Koopman可观察到的物品,然后将其用于进军动态响应的时间。与纯粹的数据驱动方法不同,即使存在不确定性,提出的方法也是强大的。这使提出的方法适合于时间依赖性可靠性分析。我们提出了两个架构。一种适用于时间依赖性的可靠性分析,当系统受到随机初始条件的影响,而另一个适用于系统参数的不确定性时,则适用于另一个适合时间的可靠性分析。拟议的方法是强大的,并普遍认为是看不见的环境(分布式预测)。使用三个数值示例说明了所提出的方法的功效。获得的结果表明所提出的方法与纯粹的数据驱动的自动回归神经网络和长期术语记忆网络相比。
Time-dependent structural reliability analysis of nonlinear dynamical systems is non-trivial; subsequently, scope of most of the structural reliability analysis methods is limited to time-independent reliability analysis only. In this work, we propose a Koopman operator based approach for time-dependent reliability analysis of nonlinear dynamical systems. Since the Koopman representations can transform any nonlinear dynamical system into a linear dynamical system, the time evolution of dynamical systems can be obtained by Koopman operators seamlessly regardless of the nonlinear or chaotic behavior. Despite the fact that the Koopman theory has been in vogue a long time back, identifying intrinsic coordinates is a challenging task; to address this, we propose an end-to-end deep learning architecture that learns the Koopman observables and then use it for time marching the dynamical response. Unlike purely data-driven approaches, the proposed approach is robust even in the presence of uncertainties; this renders the proposed approach suitable for time-dependent reliability analysis. We propose two architectures; one suitable for time-dependent reliability analysis when the system is subjected to random initial condition and the other suitable when the underlying system have uncertainties in system parameters. The proposed approach is robust and generalizes to unseen environment (out-of-distribution prediction). Efficacy of the proposed approached is illustrated using three numerical examples. Results obtained indicate supremacy of the proposed approach as compared to purely data-driven auto-regressive neural network and long-short term memory network.