论文标题
磁性流体的旋律分解中加速的惯性状态
Accelerated Inertial Regime in the Spinodal Decomposition of Magnetic Fluids
论文作者
论文摘要
Furukawa预测,在后期,二元流体中的域生长量表为$ \ ell(t)\ sim t^{2/3} $,并且该生长是由流体惯性驱动的。 {\ it惯性生长状态}在分子动力学(MD)模拟中非常难以捉摸。我们对包括磁性偶极子的磁极偶极子(通过远程偶极相互作用以及通常的Lennard-Jones(LJ)电位相互作用的磁极偶极子)进行了更高的研究。这种引人入胜的极性流体也表现出气体相共存,即使在没有外场的情况下,也表现出磁性顺序。从综合的MD模拟中,我们可以在SM流体中观察到惯性缩放[$ \ ell(t)\ sim t^{2/3} $]。有趣的是,从一开始就可以压倒性的惯性 - 我们的模拟没有显示早期扩散状态[$ \ ell(t)\ sim t^{1/3} $]和中间粘性状态[$ \ ell(t)\ sim t $]在LJ Fliids中。
Furukawa predicted that at late times, the domain growth in binary fluids scales as $\ell(t)\sim t^{2/3}$, and the growth is driven by fluid inertia. The {\it inertial growth regime} has been highly elusive in molecular dynamics (MD) simulations. We perform coarsening studies of the Stockmayer (SM) model comprising of magnetic dipoles that interact via long-range dipolar interactions as well as the usual Lennard-Jones (LJ) potential. This fascinating polar fluid exhibits a gas-liquid phase coexistence, and magnetic order even in the absence of an external field. From comprehensive MD simulations, we observe the inertial scaling [$\ell(t)\sim t^{2/3}$] in the SM fluid for an extended time window. Intriguingly, the fluid inertia is overwhelming from the outset - our simulations do not show the early diffusive regime [$\ell(t)\sim t^{1/3}$] and the intermediate viscous regime [$\ell(t)\sim t$] prevalent in LJ fluids.