论文标题

部分可观测时空混沌系统的无模型预测

Low degree Hurwitz stacks in the Grothendieck ring

论文作者

Landesman, Aaron, Vakil, Ravi, Wood, Melanie Matchett

论文摘要

对于$ 2 \ leq d \ leq 5 $,我们证明了hurwitz的平滑度$ d $,$ g $ copers $ \ mathbb p^1 $的类别的级别,在Grothendieck的堆栈中稳定为$ g \ f \ g \ to \ infty $,我们给出了限制的公式。当人们对盖子上施加后果条件时,我们还会验证这种稳定,并在限制简单分支的盖子时获得此限制的特别简单答案。

For $2 \leq d \leq 5$, we show that the class of the Hurwitz space of smooth degree $d$, genus $g$ covers of $\mathbb P^1$ stabilizes in the Grothendieck ring of stacks as $g \to \infty$, and we give a formula for the limit. We also verify this stabilization when one imposes ramification conditions on the covers, and obtain a particularly simple answer for this limit when one restricts to simply branched covers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源