论文标题

部分可观测时空混沌系统的无模型预测

Learning Neural Set Functions Under the Optimal Subset Oracle

论文作者

Ou, Zijing, Xu, Tingyang, Su, Qinliang, Li, Yingzhen, Zhao, Peilin, Bian, Yatao

论文摘要

学习神经集功能在许多应用中越来越重要,例如产品建议和AI辅助药物发现中的复合选择。在功能值Oracle下,大多数现有的作品研究方法学方法论,但是,这需要昂贵的监督信号。这使得仅在最佳子集(OS)Oracle下仅进行弱监督的应用程序使其不切实际,而研究的研究令人惊讶地忽略了。在这项工作中,我们提出了一个原则上但实用的最大似然学习框架,称为等效性,该框架同时满足了OS Oracle下的学习设置功能的以下desiderata:i)被建模的设定质量函数的置换式不变性; ii)允许不同的地面组合; iii)最低先验;和iv)可伸缩性。我们框架的主要组成部分涉及:对设定质量函数的基于能量的处理,深盘式体系结构来处理置换不变性,均值场差异推理及其摊销变体。由于这些高级体系结构的优雅组合,对三个现实世界应用的实证研究(包括亚马逊产品推荐,设置异常检测和虚拟筛选的复合选择)表明,Equivset Equivset的表现以大的边距优于基本线。

Learning neural set functions becomes increasingly more important in many applications like product recommendation and compound selection in AI-aided drug discovery. The majority of existing works study methodologies of set function learning under the function value oracle, which, however, requires expensive supervision signals. This renders it impractical for applications with only weak supervisions under the Optimal Subset (OS) oracle, the study of which is surprisingly overlooked. In this work, we present a principled yet practical maximum likelihood learning framework, termed as EquiVSet, that simultaneously meets the following desiderata of learning set functions under the OS oracle: i) permutation invariance of the set mass function being modeled; ii) permission of varying ground set; iii) minimum prior; and iv) scalability. The main components of our framework involve: an energy-based treatment of the set mass function, DeepSet-style architectures to handle permutation invariance, mean-field variational inference, and its amortized variants. Thanks to the elegant combination of these advanced architectures, empirical studies on three real-world applications (including Amazon product recommendation, set anomaly detection, and compound selection for virtual screening) demonstrate that EquiVSet outperforms the baselines by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源