论文标题

可重新配置的智能表面辅助ofdm继电器:子载波与平衡SNR匹配

Reconfigurable Intelligent Surface Assisted OFDM Relaying: Subcarrier Matching with Balanced SNR

论文作者

Zhang, Tong, Wang, Shuai, Zhuang, Yufan, You, Changsheng, Wen, Miaowen, Wu, Yik-Chung

论文摘要

本文考虑了可重构的智能表面(RIS)辅助频次频施加多路复用(OFDM)中继系统,并研究了在两个情况下匹配的RIS无源光束和子载波的联合设计,而情况下case-i忽略了源源ris-destination信号,而case-ii却探索了这一信号以探索利率增强的信号。我们通过共同优化被动横梁成形和子载波匹配,制定了混合成员非线性编程(微型)问题,以最大化所有子载波的总和。为了解决这个问题,我们首先开发了基于分支机构(BNB)的交替优化算法,以实现近乎最佳的解决方案。然后,还提出了基于低复杂性差异的基于范围罚款的算法和学习至上的方法。最后,仿真结果表明,与没有RI的RIS辅助的OFDM继电器系统相比获得了可实现的速率增长,因为RIS在不同的子载波对中重新铸造了子载波匹配并平衡信号 - 噪声比(SNR)。

This paper considers a reconfigurable intelligent surface (RIS) aided orthogonal frequency division multiplexing (OFDM) relaying system, and investigates the joint design of RIS passive beamforming and subcarrier matching under two cases, where Case-I ignores the source-RIS-destination signal, while Case-II explores this signal for rate enhancement. We formulate a mixed-integer nonlinear programming (MINIP) problem to maximize the sum achievable rate of all subcarriers by jointly optimizing the passive beamforming and subcarrier matching. To solve this problem, we first develop a branch-and-bound (BnB)-based alternating optimization algorithm for attaining a near-optimal solution. Then, a low-complexity difference-of-convex penalty-based algorithm and learning-to-optimize approach are also proposed. Finally, simulation results demonstrate that the RIS-assisted OFDM relaying system achieves a substantial achievable rate gain as compared to that without RIS since RIS recasts the subcarrier matching and balances the signal-to-noise ratio (SNR) among different subcarrier pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源