论文标题
在一系列假阳性范围内对部分AUC进行大规模优化
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
论文作者
论文摘要
ROC曲线(AUC)下的区域是机器学习中分类模型最广泛的性能指标之一。但是,它总结了ROC空间中所有误报利率(FPR)的真实正率(TPR),其中可能包括在某些应用中没有实际相关性的FPR。作为AUC的概括,部分AUC仅在FPR的特定范围内总结了TPR,因此在许多现实世界中是更合适的性能度量。尽管已经研究了一系列FPR中的部分AUC优化,但现有算法不可扩展到大数据,也不适用于深度学习。为了应对这一挑战,我们将问题投入到任何平滑的预测功能(例如,深神经网络)的非平滑范围差异差异(DC)程序中,这使我们能够基于Moreau Invelope平滑技术开发有效的近似梯度下降方法,并受到了非镜头DC最新进展的启发。为了提高大型数据处理的效率,我们使用了算法中有效的随机块坐标更新。我们提出的算法也可以用来最大程度地减少排名范围损失的总和,这也缺乏有效的求解器。我们建立了$ \ tilde o(1/ε^6)$的复杂性,以找到接近$ε$ - 临界解决方案。最后,我们在数值上证明了我们提出的算法对部分AUC最大化和排名范围损失最小化的总和的有效性。
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning. However, it summarizes the true positive rates (TPRs) over all false positive rates (FPRs) in the ROC space, which may include the FPRs with no practical relevance in some applications. The partial AUC, as a generalization of the AUC, summarizes only the TPRs over a specific range of the FPRs and is thus a more suitable performance measure in many real-world situations. Although partial AUC optimization in a range of FPRs had been studied, existing algorithms are not scalable to big data and not applicable to deep learning. To address this challenge, we cast the problem into a non-smooth difference-of-convex (DC) program for any smooth predictive functions (e.g., deep neural networks), which allowed us to develop an efficient approximated gradient descent method based on the Moreau envelope smoothing technique, inspired by recent advances in non-smooth DC optimization. To increase the efficiency of large data processing, we used an efficient stochastic block coordinate update in our algorithm. Our proposed algorithm can also be used to minimize the sum of ranked range loss, which also lacks efficient solvers. We established a complexity of $\tilde O(1/ε^6)$ for finding a nearly $ε$-critical solution. Finally, we numerically demonstrated the effectiveness of our proposed algorithms for both partial AUC maximization and sum of ranked range loss minimization.