论文标题

与密集的免费间隔在连续图上的最小设置

Minimal sets on continua with a dense free interval

论文作者

Mihoková, Michaela

论文摘要

我们研究了Continua $ x $的最小套装,并具有密集的免费间隔$ j $和本地连接的剩余时间。这类连续性包括重要空间,例如拓扑师的正弦曲线或华沙圈子。如果已知其余部分并连接其余部分的最小设置时,我们可以完全表征最小设置的拓扑结构。特别是,在$ x \ setminus j $是本地树突的情况下,给出了$ x $的最小套件的完整表征。

We study minimal sets on continua $X$ with a dense free interval $J$ and a locally connected remainder. This class of continua includes important spaces such as the topologist's sine curve or the Warsaw circle. In the case when minimal sets on the remainder are known and the remainder is connected, we obtain a full characterization of the topological structure of minimal sets. In particular, a full characterization of minimal sets on $X$ is given in the case when $X\setminus J$ is a local dendrite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源