论文标题
中微子LARTPC中的低能物理
Low-Energy Physics in Neutrino LArTPCs
论文作者
论文摘要
在这份白皮书中,我们概述了与液体氩时间预测室(LARTPC)探测器中低能(小于100 MEV)签名相关的一些科学机会和挑战。关键要点总结如下。 1)LARTPC通过检测MEV范围的几十个事件特征对一系列物理和天体物理学特征具有独特的敏感性。 2)低能特征是GEV尺度加速器中微子相互作用最终状态的组成部分,它们的重建可以增强LARTPC实验的振荡物理敏感性。 3)来自加速器和天然来源的BSM信号还会在低能范围内产生不同的签名,并且这些签名的重建可以增加基于LARTPC的搜索中BSM方案的广度。 4)中微子相互作用的横截面和其他与低于五百的LARTPC特征相关的氩气中的核物理过程知之甚少。需要改进的理论和实验测量。茶水腐烂的源源和带电的粒子和中子测试梁是实验改善这种理解的理想设施。 5)在低能范围内有特定的校准需求,以及对放射学和宇宙基础背景的控制和理解的特定需求。 6)应探讨增强低能功能的未来LARTPC技术的新思想。其中包括新颖的电荷增强和读数系统,增强的光子检测,低放射性氩气和氙气掺杂。 7)低能签名,无论是稳态还是超新星爆发的一部分,或更大的GEV尺度事件拓扑,具有特定的触发,DAQ和重建要求,必须在传统的GEV规模数据收集和分析途径的范围之外解决。
In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. 2) Low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. 3) BSM signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of BSM scenarios accessible in LArTPC-based searches. 4) Neutrino interaction cross sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood. Improved theory and experimental measurements are needed. Pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for experimentally improving this understanding. 5) There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. 6) Novel ideas for future LArTPC technology that enhance low-energy capabilities should be explored. These include novel charge enhancement and readout systems, enhanced photon detection, low radioactivity argon, and xenon doping. 7) Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways.