论文标题
微波驱动的低温等离子体中的模式过渡($α-γ$)和滞后
Mode transition ($α-γ$) and hysteresis in microwave-driven low-temperature plasmas
论文作者
论文摘要
我们在微波驱动的低压氩血浆中发现了整个过渡区域$α$和$γ$放电模式之间的磁滞。滞后的表现为模式转变的临界压力取决于压力变化的方向。作为推论,血浆将在相同的工作参数(压力,功率和气体组成)下获得不同的排放特性,这表明双重稳定性或记忆效应的存在。对从OH(A-X)线排放测得的旋转温度和振动温度的分析表明,磁滞主要是由于$γ$模式中的快速气体加热导致中性密度较小,而中性密度比$α$ mode的中性密度较小。当增加气体压力时,$γ$模式排放的温度相对较高,中性密度较低,因此,需要更高的工作压力才能达到$α$ - 模式。另一方面,由于相对较高的中性密度为$α$ mmode排放,因此在维持$α$ mode的同时降低压力时,其过渡到$γ$模板的压力比以前的情况较低。当相对于中性气体密度而不是压力时,当血浆特性出现时,滞后消失了以下事实。
We discovered a hysteresis in a microwave-driven low-pressure argon plasma during gas pressure change across the transition region between $α$ and $γ$ discharge modes. The hysteresis is manifested in that the critical pressure of mode transition depends on the direction of pressure change. As a corollary, the plasma would attain different discharge properties under the same operating parameters (pressure, power, and gas composition), suggesting a bi-stability or existence of memory effect. Analysis of the rotational and vibrational temperatures measured from the OH (A-X) line emissions shows that the hysteresis is mainly due to the fast gas heating in the $γ$-mode leading to a smaller neutral density than that of the $α$-mode. When increasing the gas pressure, the $γ$-mode discharge maintains a relatively higher temperature and lower neutral density, and thus, it requires a higher operating pressure to reach the $α$-mode. On the other hand, decreasing the pressure while maintaining $α$-mode, the transition to $γ$-mode occurs at a lower pressure than the former case due to a relatively higher neutral density of $α$-mode discharge. This interpretation is supported by the fact that the hysteresis disappears when the plasma properties are presented with respect to the neutral gas density instead of pressure.