论文标题

微波驱动的低温等离子体中的模式过渡($α-γ$)和滞后

Mode transition ($α-γ$) and hysteresis in microwave-driven low-temperature plasmas

论文作者

Kim, Kyungtae, Nam, Woojin, Lee, Jimo, Shim, Seungbo, Yun, Gunsu S.

论文摘要

我们在微波驱动的低压氩血浆中发现了整个过渡区域$α$和$γ$放电模式之间的磁滞。滞后的表现为模式转变的临界压力取决于压力变化的方向。作为推论,血浆将在相同的工作参数(压力,功率和气体组成)下获得不同的排放特性,这表明双重稳定性或记忆效应的存在。对从OH(A-X)线排放测得的旋转温度和振动温度的分析表明,磁滞主要是由于$γ$模式中的快速气体加热导致中性密度较小,而中性密度比$α$ mode的中性密度较小。当增加气体压力时,$γ$模式排放的温度相对较高,中性密度较低,因此,需要更高的工作压力才能达到$α$ - 模式。另一方面,由于相对较高的中性密度为$α$ mmode排放,因此在维持$α$ mode的同时降低压力时,其过渡到$γ$模板的压力比以前的情况较低。当相对于中性气体密度而不是压力时,当血浆特性出现时,滞后消失了以下事实。

We discovered a hysteresis in a microwave-driven low-pressure argon plasma during gas pressure change across the transition region between $α$ and $γ$ discharge modes. The hysteresis is manifested in that the critical pressure of mode transition depends on the direction of pressure change. As a corollary, the plasma would attain different discharge properties under the same operating parameters (pressure, power, and gas composition), suggesting a bi-stability or existence of memory effect. Analysis of the rotational and vibrational temperatures measured from the OH (A-X) line emissions shows that the hysteresis is mainly due to the fast gas heating in the $γ$-mode leading to a smaller neutral density than that of the $α$-mode. When increasing the gas pressure, the $γ$-mode discharge maintains a relatively higher temperature and lower neutral density, and thus, it requires a higher operating pressure to reach the $α$-mode. On the other hand, decreasing the pressure while maintaining $α$-mode, the transition to $γ$-mode occurs at a lower pressure than the former case due to a relatively higher neutral density of $α$-mode discharge. This interpretation is supported by the fact that the hysteresis disappears when the plasma properties are presented with respect to the neutral gas density instead of pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源