论文标题

在Banach空间中的广义Lipschitz条件下的三步方案的收敛标准

Convergence Criteria of a Three Step Scheme under generalized Lipschitz Condition in Banach Spaces

论文作者

Saxena, Akanksha, Jaiswal, J. P., Pardasani, K. R.

论文摘要

这项研究的目的是研究三步牛顿-TRAUB技术的局部收敛,以求解Banach空间中的非线性方程,其收敛速率为五。假定非线性操作员的第一阶导数满足了普遍的Lipschitz条件,即$κ$平均条件。此外,在假设操作员的派生型满足$κ$ a-paervery的半径或中心Lipschitz条件下,开发了Banach空间中相同方法的收敛性的一些结果,而$κ$是一个积极的积分函数,但不一定是不必要的。我们的新概念无需新的情况提供了更严格的融合分析。结果,我们扩大了迭代方法的适用性。通过照明示例进一步支持理论结果。解决方案的存在和独特性$ x^*$在收敛定理中检查。最终,与以前需要相同的计算工作相比,我们达到了解决方案位置的足够的足够收敛标准和更具体的信息。我们通过将结果应用于$κ(u)$的某些特定功能,从而获得收敛定理以及一些新的结果。进行数值测试以证实这项工作中建立的假设。

The goal of this study is to investigate the local convergence of a three-step Newton-Traub technique for solving nonlinear equations in Banach spaces with a convergence rate of five. The first order derivative of a nonlinear operator is assumed to satisfy the generalized Lipschitz condition, i.e. the $κ$-average condition. Furthermore, a few results on the convergence of the same method in Banach spaces are developed under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak $κ$-average, and that $κ$ is a positive integrable function but not necessarily non-decreasing. Our new notion provides a tighter convergence analysis without the need for new circumstances. As a result, we broaden the applicability of iterative approaches. Theoretical results are supported further by illuminating examples. The existence and uniqueness of the solution $x^*$ are examined in the convergence theorem. In the end, we achieve weaker sufficient convergence criteria and more specific information on the position of the solution than previous efforts requiring the same computational effort. We obtain the convergence theorems as well as some novel results by applying the results to some specific functions for $κ(u)$. A numerical test is carried out to corroborate the hypothesis established in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源