论文标题

主动:部分多视图集群的无增强图对比度学习

ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial Multi-View Clustering

论文作者

Wang, Yiming, Chang, Dongxia, Fu, Zhiqiang, Wen, Jie, Zhao, Yao

论文摘要

在本文中,我们提出了一个无增强的图形对比学习框架,即活跃,以解决部分多视图聚类的问题。值得注意的是,我们假设相似样本的表示(即属于同一群集)及其乘视图特征应相似。这与假定图像及其增强性的一般无监督的对比学习不同。具体而言,使用最近的邻居构建了关系图以识别现有的相似样本,然后将构造的Inter-Inter-Inter-Inter-Interance关系图转移到缺失的视图中,以在相应的缺失数据上构建图形。随后,设计了两个主要组件,即视图对比度学习(WGC)和跨视图一致性学习(CGC),以最大程度地提高集群中不同视图的共同信息。提出的方法将实例级对比度学习和缺少数据推断提高到集群级别,从而有效地减轻了单个缺失数据对群集的影响。在几个具有挑战性的数据集上进行的实验证明了我们提出的方法的优势。

In this paper, we propose an augmentation-free graph contrastive learning framework, namely ACTIVE, to solve the problem of partial multi-view clustering. Notably, we suppose that the representations of similar samples (i.e., belonging to the same cluster) and their multiply views features should be similar. This is distinct from the general unsupervised contrastive learning that assumes an image and its augmentations share a similar representation. Specifically, relation graphs are constructed using the nearest neighbours to identify existing similar samples, then the constructed inter-instance relation graphs are transferred to the missing views to build graphs on the corresponding missing data. Subsequently, two main components, within-view graph contrastive learning (WGC) and cross-view graph consistency learning (CGC), are devised to maximize the mutual information of different views within a cluster. The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering. Experiments on several challenging datasets demonstrate the superiority of our proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源