论文标题
Steinberg代数的odalgra groupoid c* - 代数
A Steinberg algebra approach to étale groupoid C*-algebras
论文作者
论文摘要
我们从其复杂的Steinberg代数中构造了一个群体的完整和减少的c*代数。我们还表明,我们的构造给出了与标准构造相同的C*代数。在最后一节中,我们考虑了一个任意的局部紧凑,第二计数的,典型的类固醇,可能是非Hausdorff。使用为Steinberg代数开发的技术,我们表明,Connes功能空间到$ b(\ Mathcal {H})$的每一个$*$ - 同构的每一个同构,自动从I-Norm界定。以前,这仅以Hausdorff群体闻名。
We construct the full and reduced C*-algebras of an ample groupoid from its complex Steinberg algebra. We also show that our construction gives the same C*-algebras as the standard constructions. In the last section, we consider an arbitrary locally compact, second-countable, étale groupoid, possibly non-Hausdorff. Using the techniques developed for Steinberg algebras, we show that every $*$-homomorphism from Connes' space of functions to $B(\mathcal{H})$ is automatically I-norm bounded. Previously, this was only known for Hausdorff groupoids.