论文标题

与巴特一起深入学习

Deep, Deep Learning with BART

论文作者

Blumenthal, Moritz, Luo, Guanxiong, Schilling, Martin, Holme, H. Christian M., Uecker, Martin

论文摘要

目的:为MRI中的可复制研究开发基于深度学习的图像重建框架。 方法:Bart Toolbox提供了丰富的校准和重建算法的实现,用于并行成像和压缩传感。在这项工作中,BART由非线性操作员框架扩展,该框架提供了自动差异以允许计算梯度。 BART的现有特定于MRI的操作员,例如非均匀的快速傅立叶变换,直接集成到该框架中,并与神经网络中使用的常见构建块相辅相成。为了评估用于先进的基于深度学习的重建框架的使用,实现了两个最先进的展开的重建网络,即变异网络[1]和MODL [2]。 结果:可以使用Bart的基于BART的基于梯度的优化算法来构建和训练最新的深层图像重建网络。与基于TensorFlow的原始实现相比,BART实施在训练时间和重建质量方面的性能相似。 结论:通过将非线性操作员和神经网络集成到BART中,我们为MRI中的深度学习重建提供了一个一般框架。

Purpose: To develop a deep-learning-based image reconstruction framework for reproducible research in MRI. Methods: The BART toolbox offers a rich set of implementations of calibration and reconstruction algorithms for parallel imaging and compressed sensing. In this work, BART was extended by a non-linear operator framework that provides automatic differentiation to allow computation of gradients. Existing MRI-specific operators of BART, such as the non-uniform fast Fourier transform, are directly integrated into this framework and are complemented by common building blocks used in neural networks. To evaluate the use of the framework for advanced deep-learning-based reconstruction, two state-of-the-art unrolled reconstruction networks, namely the Variational Network [1] and MoDL [2], were implemented. Results: State-of-the-art deep image-reconstruction networks can be constructed and trained using BART's gradient based optimization algorithms. The BART implementation achieves a similar performance in terms of training time and reconstruction quality compared to the original implementations based on TensorFlow. Conclusion: By integrating non-linear operators and neural networks into BART, we provide a general framework for deep-learning-based reconstruction in MRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源