论文标题

通过有限元方法中的相位接近,在脆性材料中的热力学一致的衍生和计算二胎和断裂的衍生

Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method

论文作者

Amirian, Benhour, Jafarzadeh, Hossein, Abali, Bilen Emek, Reali, Alessandro, Hogan, James David

论文摘要

提出了一种理论计算框架,以预测两种各向异性脆性材料的失败行为,即单晶镁和碳化物。在小型和大变形中,构成方程是通过使用热力学来得出的,以建立完全耦合和瞬态的双胞胎和裂纹系统。要研究常见的变形机制(例如,双胞胎和骨折),这可能是由极端机械载荷引起的,这是一种单层基于Ginzburg-基于Landau的基于Landau的相位场理论以及机械均衡方程在以下问题中实现的机械平衡方程在以下问题中实现的:变形; (ii)在纯模式I和模式II载荷下,镁诱导的镁诱导的二颗; (iii)在双轴压载下均质单晶硼碳酸盐中骨折的研究。结果通过稳态相位场方法验证,并通过文献中可用的实验数据验证。这种计算方法的成功依赖于使用与断裂和孪生有关的两个不同的相位(顺序)参数。基于Python的开源平台Fenics开发了基于有限元方法的代码。我们可以公开使用该代码,并且可以扩展开发的算法以研究动态载荷或热激活机制下的相变,其中在当前的综合模型方法中考虑了各种变形机制之间的竞争。

A theoretical-computational framework is proposed for predicting the failure behavior of two anisotropic brittle materials, namely, single crystal magnesium and boron carbide. Constitutive equations are derived, in both small and large deformations, by using thermodynamics in order to establish a fully coupled and transient twin and crack system. To study the common deformation mechanisms (e.g., twinning and fracture), which can be caused by extreme mechanical loading, a monolithically-solved Ginzburg--Landau-based phase-field theory coupled with the mechanical equilibrium equation is implemented in a finite element simulation framework for the following problems: (i) twin evolution in two-dimensional single crystal magnesium and boron carbide under simple shear deformation; (ii) crack-induced twinning for magnesium under pure mode I and mode II loading; and (iii) study of fracture in homogeneous single crystal boron carbide under biaxial compressive loading. The results are verified by a steady-state phase-field approach and validated by available experimental data in the literature. The success of this computational method relies on using two distinct phase-field (order) parameters related to fracture and twinning. A finite element method-based code is developed within the Python-based open-source platform FEniCS. We make the code publicly available and the developed algorithm may be extended for the study of phase transformations under dynamic loading or thermally-activated mechanisms, where the competition between various deformation mechanisms is accounted for within the current comprehensive model approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源