论文标题
命名您的样式:任意艺术家感知的图像样式转移
Name Your Style: An Arbitrary Artist-aware Image Style Transfer
论文作者
论文摘要
在过去的几年中,图像样式转移引起了广泛的关注。尽管结果显着,但它需要其他样式图像作为参考,从而使其灵活性和不便降低。使用文本是描述样式的最自然方法。更重要的是,文本可以描述隐性抽象样式,例如特定艺术家或艺术运动的风格。在本文中,我们提出了一个文本驱动的图像样式传输(TXST),该传输利用高级图像文本编码器控制任意样式传输。我们介绍了一种对比度训练策略,可从图像文本模型(即剪辑)中有效提取样式描述,该描述将风格与文本描述保持一致。为此,我们还提出了一个新颖有效的注意力模块,该模块探讨了融合风格和内容功能的跨分形式。最后,我们实现了任意的艺术家感知图像样式的转移,以学习和转移特定的艺术特征,例如毕加索,油画或粗略的草图。广泛的实验表明,我们的方法在图像和文本样式上都超过了最新方法。此外,它可以模仿一个或多个艺术家的风格,以取得有吸引力的结果,从而突出图像样式转移方向有希望的方向。
Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a text-driven image style transfer (TxST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient attention module that explores cross-attentions to fuse style and content features. Finally, we achieve an arbitrary artist-aware image style transfer to learn and transfer specific artistic characters such as Picasso, oil painting, or a rough sketch. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods on both image and textual styles. Moreover, it can mimic the styles of one or many artists to achieve attractive results, thus highlighting a promising direction in image style transfer.