论文标题
分形莫比乌斯八角形网络及其应用的标准化拉普拉斯频谱分析
The Normalized Laplacian Spectrum Analysis of Fractal Mobius Octagonal Networks and its Applications
论文作者
论文摘要
网络频谱的研究和计算可用于描述网络结构并量化网络性能的分析。由$ q_n $表示的分形möbius八角形网络源自分形线性八角形网络的相对外侧边缘的反向识别。在本文中,$ q_n $的归一化laplacian频谱由两个矩阵$ \ mathcal {l} _a $和$ \ Mathcal {l} _s _s $确定。作为我们结果的重要应用,获得了$ q_n $的某些拓扑指数(乘法度kirchhoff索引,跨越树的数量)。
The study and calculation of spectrum of networks can be used to describe networks structure and quantify analysis of networks performance. The fractal Möbius octagonal networks, denoted by $Q_n$, is derived from the inverse identification of the opposite lateral edges of fractal linear octagonal networks. In this paper, the normalized Laplacian spectrum of $Q_n$ is determined by two matrices $\mathcal {L}_A$ and $\mathcal {L}_S$. As an important application of our results, some topological indices (multiplicative degree-Kirchhoff index, the number of spanning trees) formulas of $Q_n$ are obtained.