论文标题

全量子交叉产品,不变措施和I型提升

Full quantum crossed products, invariant measures, and type-I lifting

论文作者

Chirvasitu, Alexandru

论文摘要

我们表明,对于封闭的嵌入$ \ mathbb {h} \ le \ mathbb {g} $的本地紧凑量量子组(LCQGS),带有$ \ mathbb {g}/\ mathbb {h} $ \ mathbb {h} $是。在相关说明的情况下,我们还证明,如果$ \ mathbb {g} \ Crocklearrowright在Unital $ c^*$上的LCQG $ a $ a $ c^*$ - 代数承认一个不变的状态,则$ \ \ \ \ m rathbb {g} $嵌入的整个crossed of Multerge note crossed and anger notbra notbra and and and ander note ander note anger note and and anger notbra notbra(and) Unital)。 我们还证明了越过LCQG动作的交叉产品的其他结果,其中一些似乎是民间传说。其中包括(a)两个相互双重量子组的形态产生同构完全交叉产物,以及(b)通过双辅助LCQGS完全和减少的交叉产物是同构的事实。

We show that for a closed embedding $\mathbb{H}\le \mathbb{G}$ of locally compact quantum groups (LCQGs) with $\mathbb{G}/\mathbb{H}$ admitting an invariant probability measure, a unitary $\mathbb{G}$-representation is type-I if its restriction to $\mathbb{H}$ is. On a related note, we also prove that if an action $\mathbb{G}\circlearrowright A$ of an LCQG on a unital $C^*$-algebra admits an invariant state then the full group algebra of $\mathbb{G}$ embeds into the resulting full crossed product (and into the multiplier algebra of that crossed product if the original algebra is not unital). We also prove a few other results on crossed products of LCQG actions, some of which seem to be folklore; among them are (a) the fact that two mutually dual quantum-group morphisms produce isomorphic full crossed products, and (b) the fact that full and reduced crossed products by dual-coamenable LCQGs are isomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源