论文标题
在一维脱合量子三位点处出现的O(4)对称性
Emergent O(4) symmetry at an one-dimensional deconfined quantum tricritical point
论文作者
论文摘要
我们显示了一个$ \ rm o(4)$对称性在固定的量子键固体的量子三智度点和两个铁磁阶段,在$ s = 1/2 $沮丧的自旋链中,通过将分析分析和数值计算与Infinite Matrix产品的时间演化结合在一起。使用此对称性,价值键固体和三个磁性参数在红外限制中形成$ \ rm o(4)$ pseudovector,并且可以连续旋转。我们从数值上确定量子三级点的位置,并研究$ \ rm o(4)$ vector成分和相关的保守电流的相关函数的缩放。这些相关函数的关键行为都与现场理论结果一致。在三个智力点处的紧急$ \ rm o(4)$对称性是通过出现noether保守电流的缩放维度的整数值证明的。我们的发现不仅可以直接证明在一维价键固体到磁过渡时如此高的紧急对称性,而且还阐明了在较高维度中探索出现的对称性。
We show an $\rm O(4)$ symmetry emerges at a deconfined quantum tricritical point of a valence bond solid and two ferromagnetic phases in an $S = 1/2$ frustrated spin chain by combining analytical analysis and numerical calculations with the time evolution of infinite matrix product states. With this symmetry, the valence-bond solid and the three magnetic order parameters form an $\rm O(4)$ pseudovector in the infrared limit, and can continuously rotate into each other. We numerically determine the location of the quantum tricritical point and study the scaling of the correlation functions of the $\rm O(4)$ vector components and associated conserved currents. The critical behaviors of these correlation functions are all in accord with field theoretical results. The emergent $\rm O(4)$ symmetry at the tricritical point is justified by the integer value of the scaling dimension of the emergent Noether conserved currents. Our findings not only give direct evidence of such a high emergent symmetry at an one-dimensional valence bond solid to magnetic transition but also shed light on exploring emergent symmetries in higher dimensions.