论文标题

总结有关贝叶斯随机效应荟萃分析的研究间异质性的经验信息

Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis

论文作者

Röver, Christian, Sturtz, Sibylle, Lilienthal, Jona, Bender, Ralf, Friede, Tim

论文摘要

在贝叶斯荟萃分析中,通常需要对研究间异质性的先前概率的规范,并且在仅包括很少研究的情况下特别有益。在此类先前分布的设置中的考虑中,有关一组相关分析的可用经验数据的咨询有时起着作用。明智地总结历史数据的确切方式并不明显;特别是,对异质性估计的经验收集的调查不会针对实际问题,并且通常只有有限的使用。对随机效应荟萃分析的常用正常分层模型进行了扩展,以推断出异质性。使用示例数据集,我们演示了如何将分布拟合到一组荟萃分析的凭经验观察到的异质性数据。考虑因素还包括选择参数分布家族。在这里,我们专注于简单且容易适用的方法,然后将其转化为(先验)概率分布。

In Bayesian meta-analysis, the specification of prior probabilities for the between-study heterogeneity is commonly required, and is of particular benefit in situations where only few studies are included. Among the considerations in the set-up of such prior distributions, the consultation of available empirical data on a set of relevant past analyses sometimes plays a role. How exactly to summarize historical data sensibly is not immediately obvious; in particular, the investigation of an empirical collection of heterogeneity estimates will not target the actual problem and will usually only be of limited use. The commonly used normal-normal hierarchical model for random-effects meta-analysis is extended to infer a heterogeneity prior. Using an example data set, we demonstrate how to fit a distribution to empirically observed heterogeneity data from a set of meta-analyses. Considerations also include the choice of a parametric distribution family. Here, we focus on simple and readily applicable approaches to then translate these into (prior) probability distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源