论文标题

参数化恒定深度量子神经元

Parametrized constant-depth quantum neuron

论文作者

de Carvalho, Jonathan H. A., Neto, Fernando M. de Paula

论文摘要

量子计算一直在彻底改变算法的发展。但是,目前只有嘈杂的中间量子量子设备可用,这对量子算法的电路实施施加了一些限制。在本文中,我们提出了一个框架,该框架基于内核机构建量子神经元,其中量子神经元因其特征空间映射而彼此不同。除了考虑以前的方案外,我们的广义框架还可以通过其他功能映射实例化量子神经元。我们在这里提出了一种神经元,该神经元将张量化特征映射到指数较大的空间。所提出的神经元通过恒定深度的电路实现,并具有线性数量的基本单量门门。现有的神经元应用基于阶段的功能映射,即使使用多Qubit大门,也具有指数昂贵的电路实现。此外,提出的神经元具有可以改变其激活函数形状的参数。在这里,我们显示了每个量子神经元的激活函数形状。事实证明,参数化允许所提出的神经元最佳地拟合现有神经元无法拟合的基本模式,如此处解决的玩具问题所示。这些量子神经元溶液的可行性在演示中通过量子模拟器上的执行进行了考虑。最后,我们在手写数字识别问题中比较了基于内核的量子神经元,其中在这里还对实现经典激活功能的量子神经元的性能进行了对比。在现实生活中的参数化潜力的重复证据允许得出结论,这项工作提供了具有提高歧视能力的量子神经元。结果,量子神经元的广义框架可以有助于实用量子优势。

Quantum computing has been revolutionizing the development of algorithms. However, only noisy intermediate-scale quantum devices are available currently, which imposes several restrictions on the circuit implementation of quantum algorithms. In this paper, we propose a framework that builds quantum neurons based on kernel machines, where the quantum neurons differ from each other by their feature space mappings. Besides contemplating previous schemes, our generalized framework can instantiate quantum neurons with other feature mappings. We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space. The proposed neuron is implemented by a circuit of constant depth with a linear number of elementary single-qubit gates. The existing neuron applies a phase-based feature mapping with an exponentially expensive circuit implementation, even using multi-qubit gates. Additionally, the proposed neuron has parameters that can change its activation function shape. Here, we show the activation function shape of each quantum neuron. It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit, as demonstrated in the toy problems addressed here. The feasibility of those quantum neuron solutions is also contemplated in the demonstration through executions on a quantum simulator. Finally, we compare those kernel-based quantum neurons in the problem of handwritten digit recognition, where the performances of quantum neurons that implement classical activation functions are also contrasted here. The repeated evidence of the parametrization potential achieved in real-life problems allows concluding that this work provides a quantum neuron with improved discriminative abilities. As a consequence, the generalized framework of quantum neurons can contribute toward practical quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源