论文标题

$ \ Mathfrak {gl} _n $重量系统的新方法

New approaches to $\mathfrak{gl}_N$ weight system

论文作者

Yang, Zhuoke

论文摘要

本文的动机是出于理解与Lie代数$ \ Mathfrak {gl} _n $相对应的权重系统的愿望。在一般和弦图上计算Lie代数权重系统值的直接方法等于详细说明了非交通通用包围代数的计算,尽管结果属于后者的中心。第一种方法是基于M. kazarian引起的建议,以定义在$ \ mathfrak {gl} _n $的通用信封代数的中心的置换中的不变。这种不变的限制对没有固定点的参与度(这样的对不足决定了一个和弦图)与此和弦图上的$ \ mathfrak {gl} _n $加权系统的值一致。我们描述了递归,允许一个人计算$ \ mathfrak {gl} _n $ invariant的排列,并在许多示例中演示了它是如何工作的。第二种方法是基于lie代数$ \ mathfrak {gl} _n $的Harish-Chandra同构。这同构标识了通用包络代数$ \ mathfrak {gl} _n $的中心,带有$ n $变量中移动对称的多项式的环$λ^*(n)$。 Harish-Chandra投影可以分别用于重量系统的定义多项式中的每个单元。结果,计算的主体可以在交换代数中进行,而不是非共同的代数。

The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra $\mathfrak{gl}_N$. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the noncommutative universal enveloping algebra, in spite of the fact that the result belongs to the center of the latter. The first approach is based on a suggestion due to M. Kazarian to define an invariant of permutations taking values in the center of the universal enveloping algebra of $\mathfrak{gl}_N$. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the $\mathfrak{gl}_N$ -weight system on this chord diagram. We describe the recursion allowing one to compute the $\mathfrak{gl}_N$ -invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras $\mathfrak{gl}_N$. This isomorphism identifies the center of the universal enveloping algebra $\mathfrak{gl}_N$ with the ring $Λ^*(N)$ of shifted symmetric polynomials in $N$ variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than noncommutative one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源