论文标题

在$ l^\ infty $中,与一般非线性限制的等等学矢量最小化问题

On isosupremic vectorial minimisation problems in $L^\infty$ with general nonlinear constraints

论文作者

Clark, Ed, Katzourakis, Nikos

论文摘要

我们研究了一般准甘维克斯一阶功能的$ l^\ infty $中的最小化问题,在该功能中,可允许的映射类别受到另一个至上功能的级别集合的限制,并由非线性操作员的零集。可允许的操作员的示例包括那些表达点,单方面,整体等级,椭圆形的准线性差异,Jacobian和Null Lagrangian约束的示例。通过$ l^p $近似为$ p \ to \ infty $的方法,我们说明存在特殊的$ l^\ infty $ minimiser,该$ l^\ minimiser求解了涉及某些辅助度量作为系数的Divergence PDE系统。该系统可以看作是Aronsson PDE系统的差异形式,该系统与受约束的$ l^\ infty $变分问题相关联。

We study minimisation problems in $L^\infty$ for general quasiconvex first order functionals, where the class of admissible mappings is constrained by the sublevel sets of another supremal functional and by the zero set of a nonlinear operator. Examples of admissible operators include those expressing pointwise, unilateral, integral isoperimetric, elliptic quasilinear differential, jacobian and null Lagrangian constraints. Via the method of $L^p$ approximations as $p\to \infty$, we illustrate the existence of a special $L^\infty$ minimiser which solves a divergence PDE system involving certain auxiliary measures as coefficients. This system can be seen as a divergence form counterpart of the Aronsson PDE system which is associated with the constrained $L^\infty$ variational problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源