论文标题
接近完美的倒置
Near Perfect GAN Inversion
论文作者
论文摘要
要使用生成对抗网络(GAN)编辑真实照片,我们需要一种gan倒置算法来识别完美复制它的潜在向量。不幸的是,虽然现有的反转算法可以合成类似于真实照片的图像化的图像,但它们不能在大多数应用中生成相同的克隆。在这里,我们得出了一种几乎完美的照片重建算法。我们不是依靠编码器或基于优化的方法来在固定的生成器$ g(\ cdot)$上找到反向映射,而是得出一种局部调整$ g(\ cdot)$的方法,以更优化地表示我们希望合成的照片。这是通过本地调整所学的映射$ g(\ cdot)$ s.t.来完成的。 $ \ | {\ bf x} -g({\ bf z})\ | <ε$,带有$ {\ bf x} $我们希望复制的照片,$ {\ bf z} $潜伏向量,$ \ | \ | \ | \ cdot \ |我们表明,这种方法不仅可以产生与我们希望复制的真实照片无法区分的合成图像,而且这些图像很容易编辑。我们证明了派生算法对包括人脸,动物和汽车在内的各种数据集的有效性,并讨论了其对多样性和包容性的重要性。
To edit a real photo using Generative Adversarial Networks (GANs), we need a GAN inversion algorithm to identify the latent vector that perfectly reproduces it. Unfortunately, whereas existing inversion algorithms can synthesize images similar to real photos, they cannot generate the identical clones needed in most applications. Here, we derive an algorithm that achieves near perfect reconstructions of photos. Rather than relying on encoder- or optimization-based methods to find an inverse mapping on a fixed generator $G(\cdot)$, we derive an approach to locally adjust $G(\cdot)$ to more optimally represent the photos we wish to synthesize. This is done by locally tweaking the learned mapping $G(\cdot)$ s.t. $\| {\bf x} - G({\bf z}) \|<ε$, with ${\bf x}$ the photo we wish to reproduce, ${\bf z}$ the latent vector, $\|\cdot\|$ an appropriate metric, and $ε> 0$ a small scalar. We show that this approach can not only produce synthetic images that are indistinguishable from the real photos we wish to replicate, but that these images are readily editable. We demonstrate the effectiveness of the derived algorithm on a variety of datasets including human faces, animals, and cars, and discuss its importance for diversity and inclusion.