论文标题
联合IRS位置和多IRS的大小优化辅助双向全双工通信系统
Joint IRS Location and Size Optimization in Multi-IRS Aided Two-Way Full-Duplex Communication Systems
论文作者
论文摘要
智能反射表面(IRS)已成为一种有前途的无线技术,用于电磁波的动态配置和控制,从而创造了一个智能(可编程)的无线电环境。在这种情况下,我们研究了由两个使用全双工(FD)技术的用户组成的多IRS辅助双向通信系统。更具体地说,我们处理优化的联合IRS位置和大小(即反射元素的数量),以最大程度地减少系统中断概率的上限:在各种限制下:最小和最大反映元素,每个IR的反射元素数量,最大安装IRS数量,最大值的反射元素,最大值的反射元素(最大值范围)(对额外的信号范围内的范围)以及最大的安装成本,以及IRS IRS IRS IRS IRS IRS IRS IRS。首先,该问题被称为离散优化问题,然后给出了其NP硬度的理论证明。此外,我们通过解决线性编程松弛(LPR)问题来提供最佳值的下限。随后,我们基于LPR溶液设计了两种多项式时间算法,确定性的贪婪算法和随机近似算法。前者是一种启发式方法,始终计算可行解决方案(后验)性能保证。后者使用随机舍入实现了近似解决方案,并具有可证明的(先验)概率的保证。此外,与基线方案相比,广泛的数值模拟证明了所提出的算法的优越性。最后,还得出了关于FD和常规半偶联(HD)系统之间比较的有用结论。
Intelligent reflecting surfaces (IRSs) have emerged as a promising wireless technology for the dynamic configuration and control of electromagnetic waves, thus creating a smart (programmable) radio environment. In this context, we study a multi-IRS assisted two-way communication system consisting of two users that employ full-duplex (FD) technology. More specifically, we deal with the joint IRS location and size (i.e., the number of reflecting elements) optimization in order to minimize an upper bound of system outage probability under various constraints: minimum and maximum number of reflecting elements per IRS, maximum number of installed IRSs, maximum total number of reflecting elements (implicit bound on the signaling overhead) as well as maximum total IRS installation cost. First, the problem is formulated as a discrete optimization problem and, then, a theoretical proof of its NP-hardness is given. Moreover, we provide a lower bound on the optimum value by solving a linear-programming relaxation (LPR) problem. Subsequently, we design two polynomial-time algorithms, a deterministic greedy algorithm and a randomized approximation algorithm, based on the LPR solution. The former is a heuristic method that always computes a feasible solution for which (a posteriori) performance guarantee can be provided. The latter achieves an approximate solution, using randomized rounding, with provable (a priori) probabilistic guarantees on the performance. Furthermore, extensive numerical simulations demonstrate the superiority of the proposed algorithms compared to the baseline schemes. Finally, useful conclusions regarding the comparison between FD and conventional half-duplex (HD) systems are also drawn.