论文标题

Carnegie Supernova Project-I的II型超新星。 iii。通过物理和观察到的特性之间的相关性了解SN II的多样性

Type II supernovae from the Carnegie Supernova Project-I. III. Understanding SN II diversity through correlations between physical and observed properties

论文作者

Martinez, L., Anderson, J. P., Bersten, M. C., Hamuy, M., González-Gaitán, S., Orellana, M., Stritzinger, M., Phillips, M. M., Gutiérrez, C. P., Burns, C., de Jaeger, T., Ertini, K., Folatelli, G., Förster, F., Galbany, L., Hoeflich, P., Hsiao, E. Y., Morrell, N., Pessi, P. J., Suntzeff, N. B.

论文摘要

SNE II显示出巨大的光度和光谱多样性,这归因于其祖细胞和爆炸特性的各种物理特征。在这项研究中,在一系列论文中,我们分析了Carnegie Supernova Project-I观察到的SNE II样本,我们介绍了它们观察到的与物理性质之间的相关性。我们的分析表明,爆炸能量是与最高参数相关的物理特性。我们恢复了先前建议的富含氢的包膜质量与高原持续时间之间的关系,并发现更具发光的SNE II具有较高的膨胀速度,更快的光曲线下降速度和较高的NI质量与较高的能量爆炸一致。此外,在射出的内部区域中,更快的下降SNE II也与更浓缩的Ni兼容。在初始质量,爆炸能量和Ni质量之间发现积极趋势。尽管爆炸能量跨越了我们的模型探索的整个范围,但初始质量通常来自相对较窄的范围。从我们的模型网格中测量了可观察到的特性,以确定每个物理参数对观察到的SN II多样性的影响。我们认为,当假设标准的单明星进化时,爆炸能量是对SN II多样性产生最大影响的物理参数,就像本研究中使用的模型一样。假设质量损失较高的PRE-SN模型的包含会导致某些相关的强度显着提高,尤其是祖细胞富含氢的包膜质量与高原和光学较厚的相位持续时间之间的相关性。这些差异清楚地表明了对恒星进化的不同治疗方法的影响,这意味着对标准单星发展的假设的变化对于完全理解SN II多样性是必要的。

SNe II show great photometric and spectroscopic diversity which is attributed to the varied physical characteristics of their progenitor and explosion properties. In this study, the third of a series of papers where we analyse a sample of SNe II observed by the Carnegie Supernova Project-I, we present correlations between their observed and physical properties. Our analysis shows that explosion energy is the physical property that correlates with the highest number of parameters. We recover previously suggested relationships between the hydrogen-rich envelope mass and the plateau duration, and find that more luminous SNe II with higher expansion velocities, faster declining light curves, and higher Ni masses are consistent with higher energy explosions. In addition, faster declining SNe II are also compatible with more concentrated Ni in the inner regions of the ejecta. Positive trends are found between the initial mass, explosion energy, and Ni mass. While the explosion energy spans the full range explored with our models, the initial mass generally arises from a relatively narrow range. Observable properties were measured from our grid of models to determine the effect of each physical parameter on the observed SN II diversity. We argue that explosion energy is the physical parameter causing the greatest impact on SN II diversity, when assuming standard single-star evolution as in the models used in this study. The inclusion of pre-SN models assuming higher mass loss produces a significant increase in the strength of some correlations, particularly those between the progenitor hydrogen-rich envelope mass and the plateau and optically thick phase durations. These differences clearly show the impact of having different treatments of stellar evolution, implying that changes in the assumption of standard single-star evolution are necessary for a complete understanding of SN II diversity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源