论文标题

物理信息的机器学习和异质材料力学的不确定性定量

Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials

论文作者

Bharadwaja, B V S S, Nabian, Mohammad Amin, Sharma, Bharatkumar, Choudhry, Sanjay, Alankar, Alankar

论文摘要

在这项工作中,提出了基于物理学的模型 - 知情的神经网络(PINN),用于解决异质固体的弹性变形和相关的不确定性定量(UQ)。在本研究中,利用了NVIDIA开发的PINNS框架 - 模量,其中我们实施了一个用于异质固体力学的模块。我们通过假设对损耗函数的各向同性线性弹性构成行为来使用PINN来近似动量平衡。除了管理方程式外,相关的初始 /边界条件还轻轻地参与了损失函数。分析了矩阵中异质性作为空隙(低弹性模量区域)和纤维(高弹性模量区)的固体,分析了矩阵中的固体,并针对从商业有限元(FE)分析套件获得的溶液验证了结果。本研究还表明,Pinn可以捕获应力在材料界面上精确跳跃。此外,本研究还通过几何和材料特性的变化来探讨与PINN中替代特征相关的优势。提出的UQ研究表明,PINNS解决方案的平均值和标准偏差与Monte Carlo Fe结果非常吻合。 PINNS对单个代表性空隙和单纤维复合材料预测的有效Young的模量与FE预测的模量相比,该模量与FE预测的模量进行了很好的比较,FE将Pinns配方确立为有效的均质化工具。

In this work, a model based on the Physics - Informed Neural Networks (PINNs) for solving elastic deformation of heterogeneous solids and associated Uncertainty Quantification (UQ) is presented. For the present study, the PINNs framework - Modulus developed by Nvidia is utilized, wherein we implement a module for mechanics of heterogeneous solids. We use PINNs to approximate momentum balance by assuming isotropic linear elastic constitutive behavior against a loss function. Along with governing equations, the associated initial / boundary conditions also softly participate in the loss function. Solids where the heterogeneity manifests as voids (low elastic modulus regions) and fibers (high elastic modulus regions) in a matrix are analyzed, and the results are validated against solutions obtained from a commercial Finite Element (FE) analysis package. The present study also reveals that PINNs can capture the stress jumps precisely at the material interfaces. Additionally, the present study explores the advantages associated with the surrogate features in PINNs via the variation in geometry and material properties. The presented UQ studies suggest that the mean and standard deviation of the PINNs solution are in good agreement with Monte Carlo FE results. The effective Young's modulus predicted by PINNs for single representative void and single fiber composites compare very well against the ones predicted by FE, which establishes the PINNs formulation as an efficient homogenization tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源