论文标题
MIST GAN:使用样式转移进行MRI的方式归因于
MIST GAN: Modality Imputation Using Style Transfer for MRI
论文作者
论文摘要
MRI需要大量的成本,时间和精力,以生成建议有效诊断和治疗计划的所有方式。深度学习研究的最新进展表明,生成模型在样式转移和图像合成方面取得了重大改进。在这项工作中,我们将现有MR模式中缺少的MR模式制定为使用样式转移的插补问题。使用多对一的映射,我们建模一个网络,该网络可容纳特定于域样式的目标图像。我们分析了MR模式内部和跨MR模式的样式多样性。我们的模型在BRATS'18数据集上进行了测试,并且在视觉指标,SSIM和PSNR方面,所获得的结果与最新的结果相当。在由两位专家放射科医生评估后,我们表明我们的模型是有效的,可扩展的,适用于临床应用。
MRI entails a great amount of cost, time and effort for the generation of all the modalities that are recommended for efficient diagnosis and treatment planning. Recent advancements in deep learning research show that generative models have achieved substantial improvement in the aspects of style transfer and image synthesis. In this work, we formulate generating the missing MR modality from existing MR modalities as an imputation problem using style transfer. With a multiple-to-one mapping, we model a network that accommodates domain specific styles in generating the target image. We analyse the style diversity both within and across MR modalities. Our model is tested on the BraTS'18 dataset and the results obtained are observed to be on par with the state-of-the-art in terms of visual metrics, SSIM and PSNR. After being evaluated by two expert radiologists, we show that our model is efficient, extendable, and suitable for clinical applications.