论文标题

通过程序合成优化递归查询

Optimizing Recursive Queries with Program Synthesis

论文作者

Wang, Yisu Remy, Khamis, Mahmoud Abo, Ngo, Hung Q., Pichler, Reinhard, Suciu, Dan

论文摘要

查询优化的大多数工作都集中在无环的查询上。但是,当今数据科学和机器学习工作负载通常涉及递归或迭代计算。在这项工作中,我们提出了一个新型框架,用于使用程序合成方法优化递归查询。特别是,我们引入了一个简单而强大的优化规则,称为“ FGH规则”,该规则旨在找到一种评估递归程序的更快方法。通过使用功能强大的工具,例如程序合成器,SMT-Solver和Equality Atatreation System,可以找到该解决方案。我们通过证明FGH规则可以在三个已经优化的数据组系统上导致高达4个数量级的加速度来证明优化的强度。

Most work on query optimization has concentrated on loop-free queries. However, data science and machine learning workloads today typically involve recursive or iterative computation. In this work, we propose a novel framework for optimizing recursive queries using methods from program synthesis. In particular, we introduce a simple yet powerful optimization rule called the "FGH-rule" which aims to find a faster way to evaluate a recursive program. The solution is found by making use of powerful tools, such as a program synthesizer, an SMT-solver, and an equality saturation system. We demonstrate the strength of the optimization by showing that the FGH-rule can lead to speedups up to 4 orders of magnitude on three, already optimized Datalog systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源