论文标题
使用进化神经网络和稀疏多项式扩展的液态汞裂纹目标的模型校准
Model Calibration of the Liquid Mercury Spallation Target using Evolutionary Neural Networks and Sparse Polynomial Expansions
论文作者
论文摘要
预测目标血管中应变和应力的汞组成模型在改善散布中子源(SNS)的汞目标的寿命预测和未来目标设计方面起着核心作用。我们利用多年来收集的实验应变数据来通过对目标行为的大规模模拟和使用机器学习工具进行参数估计的组合来改善汞组成模型。我们提出了两种跨学科方法,用于使用进化神经网络和稀疏多项式扩展的昂贵模拟进行基于替代的模型校准。这两种方法的实验和结果表明,对于汞泄漏靶的固体力学模拟了非常好的一致性。所提出的方法用于校准强烈的质子脉冲实验期间的拉伸截止阈值,汞密度和汞速度。使用汞目标传感器的应变实验数据,与先前报道的参考参数相比,新校准的模拟在信号预测准确性上实现了7 \%的平均值提高,平均绝对误差的平均值减少了8 \%,其中一些传感器的提高最高为30 \%。提出的校准模拟可以大大帮助疲劳分析,以估计汞目标寿命和完整性,从而减少了突然的目标故障并节省了巨大的成本。但是,这项工作的一个重要结论指出,基于状态方程的当前本构模型的缺陷,在捕获剥离反应的完整物理学时。鉴于与实验数据显示出良好一致的一些校准参数可能是非物理汞特性,因此我们需要一个更高级的两相流模型来捕获气泡动力学和汞气象。
The mercury constitutive model predicting the strain and stress in the target vessel plays a central role in improving the lifetime prediction and future target designs of the mercury targets at the Spallation Neutron Source (SNS). We leverage the experiment strain data collected over multiple years to improve the mercury constitutive model through a combination of large-scale simulations of the target behavior and the use of machine learning tools for parameter estimation. We present two interdisciplinary approaches for surrogate-based model calibration of expensive simulations using evolutionary neural networks and sparse polynomial expansions. The experiments and results of the two methods show a very good agreement for the solid mechanics simulation of the mercury spallation target. The proposed methods are used to calibrate the tensile cutoff threshold, mercury density, and mercury speed of sound during intense proton pulse experiments. Using strain experimental data from the mercury target sensors, the newly calibrated simulations achieve 7\% average improvement on the signal prediction accuracy and 8\% reduction in mean absolute error compared to previously reported reference parameters, with some sensors experiencing up to 30\% improvement. The proposed calibrated simulations can significantly aid in fatigue analysis to estimate the mercury target lifetime and integrity, which reduces abrupt target failure and saves a tremendous amount of costs. However, an important conclusion from this work points out to a deficiency in the current constitutive model based on the equation of state in capturing the full physics of the spallation reaction. Given that some of the calibrated parameters that show a good agreement with the experimental data can be nonphysical mercury properties, we need a more advanced two-phase flow model to capture bubble dynamics and mercury cavitation.