论文标题

具有部分和图形稳定器分解的量子电路的经典模拟

Classical simulation of quantum circuits with partial and graphical stabiliser decompositions

论文作者

Kissinger, Aleks, van de Wetering, John, Vilmart, Renaud

论文摘要

量子电路的经典模拟的最新发展将魔术状态的巧妙分解用于有效模拟稳定器状态的总和。我们在这里展示如何通过考虑某些具有更有利分解的非稳定纠缠状态,我们可以加快这些模拟的速度。通过使用ZX-Calculus,这可以使我们可以轻松地在代表要模拟的量子电路的简化图中找到这些纠缠状态的实例。此外,我们还找到了一种新的部分稳定剂分解技术,使我们能够将魔术状态换成稳定器项。使用此技术,我们仅需要$ 2^{αt} $稳定器项,其中$α\约0.396 $,以模拟用T-COUNT $ t $的电路。这与Qassim等人发现的$α$相匹配,但是尽管它们仅在渐近限制中获得该比例,但我们的尺寸适用于任何大小的电路。我们的方法建立在最近提出的模拟方案基于结合稳定器分解和在软件quizx中实施的优化策略的方案。借助我们的技术,我们设法在几分钟内在消费者笔记本电脑上可靠地模拟了50 Qubit 1400 T-COUNT HIDEST SHIFT CIDTITS。

Recent developments in classical simulation of quantum circuits make use of clever decompositions of chunks of magic states into sums of efficiently simulable stabiliser states. We show here how, by considering certain non-stabiliser entangled states which have more favourable decompositions, we can speed up these simulations. This is made possible by using the ZX-calculus, which allows us to easily find instances of these entangled states in the simplified diagram representing the quantum circuit to be simulated. We additionally find a new technique of partial stabiliser decompositions that allow us to trade magic states for stabiliser terms. With this technique we require only $2^{αt}$ stabiliser terms, where $α\approx 0.396$, to simulate a circuit with T-count $t$. This matches the $α$ found by Qassim et al., but whereas they only get this scaling in the asymptotic limit, ours applies for a circuit of any size. Our method builds upon a recently proposed scheme for simulation combining stabiliser decompositions and optimisation strategies implemented in the software QuiZX. With our techniques we manage to reliably simulate 50-qubit 1400 T-count hidden shift circuits in a couple of minutes on a consumer laptop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源