论文标题

对知识密集型NLP的调查,具有预训练的语言模型

A Survey of Knowledge-Intensive NLP with Pre-Trained Language Models

论文作者

Yin, Da, Dong, Li, Cheng, Hao, Liu, Xiaodong, Chang, Kai-Wei, Wei, Furu, Gao, Jianfeng

论文摘要

随着预先训练的语言模型带来的模型能力的增加,增强了对具有高级功能的知识渊博的自然语言处理(NLP)模型的增强需求,包括提供和灵活地使用百科全书和常识知识。然而,仅凭预训练的语言模型仅缺乏仅处理此类知识密集的NLP任务的能力。为了应对这一挑战,提出了大量的预训练的语言模型,并在快速发展中提出了外部知识来源的增强。在本文中,我们旨在通过解剖其三个重要元素:知识源,知识密集的NLP任务和知识融合方法来总结预训练的基于语言模型的知识增强模型(PLMKE)的当前进展。最后,我们根据有关这三个要素的讨论提出了PLMKES的挑战,并试图为NLP从业人员提供潜在的进一步研究方向。

With the increasing of model capacity brought by pre-trained language models, there emerges boosting needs for more knowledgeable natural language processing (NLP) models with advanced functionalities including providing and making flexible use of encyclopedic and commonsense knowledge. The mere pre-trained language models, however, lack the capacity of handling such knowledge-intensive NLP tasks alone. To address this challenge, large numbers of pre-trained language models augmented with external knowledge sources are proposed and in rapid development. In this paper, we aim to summarize the current progress of pre-trained language model-based knowledge-enhanced models (PLMKEs) by dissecting their three vital elements: knowledge sources, knowledge-intensive NLP tasks, and knowledge fusion methods. Finally, we present the challenges of PLMKEs based on the discussion regarding the three elements and attempt to provide NLP practitioners with potential directions for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源