论文标题

具有重力源项的MHD方程系统的均衡中心方案

Well-balanced Central Scheme for the System of MHD Equations with Gravitational source term

论文作者

Kanbar, Farah, Touma, Rony, Klingenberg, Christian

论文摘要

本文开发了具有重力源项的磁性水力动力学(MHD)方程的均衡二阶有限体积方案。该方案是一种不stags脚的中央方案,它在单个网格上演变了数值解,并避免使用幽灵交错的细胞在细胞界面上解决Riemann问题。在已知的稳态的支持下,在保守变量上使用了减法技术,以表现出该方案的均衡性质。通过校正磁场的组件,在每个时间步长末尾应用约束传输方法(CTM)对未施加的中央方案应用后,无差异的约束。在文献中,在数值测试案例列表中验证了所提出的方案的鲁棒性。

A well-balanced second order finite volume central scheme for the magnetohydrodynamic (MHD) equations with gravitational source term is developed in this paper. The scheme is an unstaggered central scheme that evolves the numerical solution on a single grid and avoids solving Riemann problems at the cell interfaces using ghost staggered cells. A subtraction technique is used on the conservative variables with the support of a known steady state in order to manifest the well-balanced property of the scheme. The divergence-free constraint of the magnetic field is satisfied after applying the constrained transport method (CTM) for unstaggered central schemes at the end of each time-step by correcting the components of the magnetic field. The robustness of the proposed scheme is verified on a list of numerical test cases from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源