论文标题
磁性半学中的连续拓扑相变和巨大的磁性
Consecutive topological phase transitions and colossal magnetoresistance in a magnetic topological semimetal
论文作者
论文摘要
磁对称性和电子带拓扑的组合为实现拓扑非平凡的准粒子提供了有希望的途径,并且对磁性结构的操纵可以使拓扑相之间的切换,并有可能实现功能性物理特性。在这里,我们报告了在压力下的EUCD $ _2 $作为$ _2 $的电阻率的测量值,在压力下显示出一个有趣的绝缘圆顶,其压力在$ p _ {\ rm c1} \ sim1.0 $ 〜gpa和$ p _ {\ rm c2}} \ sim2.0 $ 〜gpa之间,同时又有两个规定。绝缘状态可以通过一个小的磁场完全抑制,从而导致$ 10^5 $ \%的订单巨大的负磁性,可通过$ \ sim0.2 $ 〜t的适度场访问。第一原理计算表明,压力下电阻率的急剧演变是由于EUCD $ _2 $的连续过渡为$ _2 $从磁性拓扑绝缘子到琐碎的绝缘子,然后是Weyl Semimetal,而后者是由于磁性接地的压力诱导的变化而导致的。同样,巨大的磁化率是由于磁矩的场引起的极化而产生的,将EUCD $ _2 $作为$ _2 $从琐碎的绝缘子转变为Weyl Semimetal。这些发现强调了弱磁交换耦合和旋转各向异性作为发现具有理想功能的可调磁性拓扑材料的成分。
The combination of magnetic symmetries and electronic band topology provides a promising route for realizing topologically nontrivial quasiparticles, and the manipulation of magnetic structures may enable the switching between topological phases, with the potential for achieving functional physical properties. Here, we report measurements of the electrical resistivity of EuCd$_2$As$_2$ under pressure, which show an intriguing insulating dome at pressures between $p_{\rm c1}\sim1.0$~GPa and $p_{\rm c2}\sim2.0$~GPa, situated between two regimes with metallic transport. The insulating state can be fully suppressed by a small magnetic field, leading to a colossal negative magnetoresistance on the order of $10^5$\%, accessible via a modest field of $\sim0.2$~T. First-principles calculations reveal that the dramatic evolution of the resistivity under pressure is due to consecutive transitions of EuCd$_2$As$_2$ from a magnetic topological insulator to a trivial insulator, and then to a Weyl semimetal, with the latter resulting from a pressure-induced change in the magnetic ground state. Similarly, the colossal magnetoresistance results from a field-induced polarization of the magnetic moments, transforming EuCd$_2$As$_2$ from a trivial insulator to a Weyl semimetal. These findings underscore weak magnetic exchange couplings and spin anisotropy as ingredients for discovering tunable magnetic topological materials with desirable functionalities.