论文标题

具有1 eV陷阱深度的工业微生物离子陷阱

Industrially Microfabricated Ion Trap with 1 eV Trap Depth

论文作者

Auchter, S., Axline, C., Decaroli, C., Valentini, M., Purwin, L., Oswald, R., Matt, R., Aschauer, E., Colombe, Y., Holz, P., Monz, T., Blatt, R., Schindler, P., Rössler, C., Home, J.

论文摘要

缩放捕获的离子量子计算将需要在长时间内至少有数百个离子的强大捕获,同时增加陷阱本身的复杂性和功能。对称的3D结构可实现高陷阱深度,但是微作业技术通常更适合于产生诱捕理想条件较低的平面结构。我们在大规模的MEMS微加工过程中提出了一个在堆叠的8英寸晶片上制造的离子陷阱,该过程提供了大体积的可再现陷阱。电极在两个相对的晶片的表面上图案化,并粘结到垫片,形成了一个3D结构,在整个堆栈中对齐为2.5微米标准偏差。我们实施了一个设计,该设计实现了从任一电极平面在200微米处固定的钙-40离子的陷阱深度的1 eV。我们表征了陷阱,与模拟的模拟达到+/- 5%的测量一致性,用于跨越0.6---3.8 MHz的模式频率,并评估跨多个陷阱位点的流浪电场。我们在广泛的陷阱频率和温度下测量运动加热速率,在1 MHz和185 K时观察40个/s。这种制造方法为产生新一代3D离子陷阱提供了高度可扩展的方法。

Scaling trapped-ion quantum computing will require robust trapping of at least hundreds of ions over long periods, while increasing the complexity and functionality of the trap itself. Symmetric 3D structures enable high trap depth, but microfabrication techniques are generally better suited to planar structures that produce less ideal conditions for trapping. We present an ion trap fabricated on stacked 8-inch wafers in a large-scale MEMS microfabrication process that provides reproducible traps at a large volume. Electrodes are patterned on the surfaces of two opposing wafers bonded to a spacer, forming a 3D structure with 2.5 micrometer standard deviation in alignment across the stack. We implement a design achieving a trap depth of 1 eV for a calcium-40 ion held at 200 micrometers from either electrode plane. We characterize traps, achieving measurement agreement with simulations to within +/-5% for mode frequencies spanning 0.6--3.8 MHz, and evaluate stray electric field across multiple trapping sites. We measure motional heating rates over an extensive range of trap frequencies, and temperatures, observing 40 phonons/s at 1 MHz and 185 K. This fabrication method provides a highly scalable approach for producing a new generation of 3D ion traps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源