论文标题
严格的耗散性,用于无限维度中的广义线性季节问题
Strict dissipativity for generalized linear-quadratic problems in infinite dimensions
论文作者
论文摘要
我们分析了希尔伯特空间上广义线性二次最佳控制问题的严格消散性。在这里,``广义''一词是指包含二次和线性项的成本函数。我们通过特定的lyapunov样二次形式的顽固性来表征严格的前置性,并具有二次存储功能。此外,我们表明,在额外的代数假设下,可以加强严格的前置性以严格消失。最后,我们将耗散性的特征与指数可检测性联系起来。
We analyze strict dissipativity of generalized linear quadratic optimal control problems on Hilbert spaces. Here, the term ``generalized'' refers to cost functions containing both quadratic and linear terms. We characterize strict pre-dissipativity with a quadratic storage function via coercivity of a particular Lyapunov-like quadratic form. Further, we show that under an additional algebraic assumption, strict pre-dissipativity can be strengthened to strict dissipativity. Last, we relate the obtained characterizations of dissipativity with exponential detectability.