论文标题

$ c^r $表面差异性的Lyapunov指数的最大度量和熵连续性具有较大的熵

Maximal measure and entropic continuity of Lyapunov exponents for $C^r$ surface diffeomorphisms with large entropy

论文作者

Burguet, David

论文摘要

我们证明了Buzzi Crovisier-Sarig的Lyapunov指数的熵连续性的有限平滑版本,用于$ c^\ infty $表面差异[9]。结果,我们表明,任何$ c^r $,$ r> 1 $,带有$ h_ {top}(f)(f)> \ frac {1} {r} {r limsup_n \ frac {1} {1} {n} {n} {n} {n} \ log^+^+^+^+ \ | df^n \ $ max的措施。我们还证明了$ f $的拓扑熵的$ c^r $连续性。

We prove a finite smooth version of the entropic continuity of Lyapunov exponents of Buzzi-Crovisier-Sarig for $C^\infty$ surface diffeomorphisms [9]. As a consequence we show that any $C^r$, $r > 1$, smooth surface diffeomorphism $f$ with $h_{top}(f) > \frac{1}{r} \limsup_n \frac{1}{n} \log^+ \|df^n\|$ admits a measure of maximal entropy. We also prove the $C^r$ continuity of the topological entropy at $f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源