论文标题
在安全的跨平台社交建议中利用数据稀疏性
Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation
论文作者
论文摘要
社会建议显示了对传统系统的有希望的改进,因为它利用社会相关数据作为额外的投入。大多数现有工作都假定所有数据都可以用于推荐平台。但是,实际上,用户项目交互数据(例如评级)和用户用户社交数据通常由不同的平台生成,并且两者都包含敏感信息。因此,“如何在不同平台上执行安全有效的社会建议,而这些数据本质上是高度分布的”仍然是一个重要的挑战。在这项工作中,我们将安全的计算技术带入了社会建议中,并提出了S3REC,这是一种稀疏的安全跨平台社交推荐框架。结果,我们的模型不仅可以通过在社交平台上纳入稀疏的社交数据来提高评级平台的建议性能,还可以保护两个平台的数据隐私。此外,为了进一步提高模型培训效率,我们建议基于同态加密和私人信息检索的两个安全稀疏矩阵乘法协议。我们在两个基准数据集上的实验证明了S3REC的有效性。
Social recommendation has shown promising improvements over traditional systems since it leverages social correlation data as an additional input. Most existing work assumes that all data are available to the recommendation platform. However, in practice, user-item interaction data (e.g.,rating) and user-user social data are usually generated by different platforms, and both of which contain sensitive information. Therefore, "How to perform secure and efficient social recommendation across different platforms, where the data are highly-sparse in nature" remains an important challenge. In this work, we bring secure computation techniques into social recommendation, and propose S3Rec, a sparsity-aware secure cross-platform social recommendation framework. As a result, our model can not only improve the recommendation performance of the rating platform by incorporating the sparse social data on the social platform, but also protect data privacy of both platforms. Moreover, to further improve model training efficiency, we propose two secure sparse matrix multiplication protocols based on homomorphic encryption and private information retrieval. Our experiments on two benchmark datasets demonstrate the effectiveness of S3Rec.