论文标题
在特征值空间中具有断开曲线的非单明平面图的注入性
Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space
论文作者
论文摘要
Fessler和Gutierrez \ cite {fe,gu}证明,如果非符号平面图具有$(0,+\ infty)$的jacobian矩阵,而没有特征值,则它是注射的。我们证明,使用任何无界曲线断开上部(下)复杂的半平面的任何无限曲线,可以替换$(0,+\ infty)$。此外,如果$ p_x + q_y $不是冲销功能,我们证明雅各布映射$(p,q)$是注入的。
Fessler and Gutierrez \cite{Fe,Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\infty)$, then it is injective. We prove that the same holds replacing $(0,+\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $P_x + Q_y$ is not a surjective function.