论文标题

半线性图的形式化功能分析

Formalized functional analysis with semilinear maps

论文作者

Dupuis, Frédéric, Lewis, Robert Y., Macbeth, Heather

论文摘要

半线性图是向量空间之间线性图的概括,在该矢量空间之间,我们允许标量作用被环的同态(例如复杂的共轭)扭曲。特别是,这种概括统一了线性和共轭线性图的概念。我们在LEAN的\ textsf {Mathlib}库中实现了这种概括,以及功能分析中的许多重要结果,以前无法正式化正式化。具体而言,我们证明了Fréchet-riesz表示定理和光谱定理,用于在真实和复杂的Hilbert空间上,用于紧凑的自动接合算子。我们还表明,半连接地图通过形式化了Dieudonné定理和Manin定理的一维情况,其应用超出了功能分析,从而在代数封闭的字段上分类了具有积极特征的代数封闭场。

Semilinear maps are a generalization of linear maps between vector spaces where we allow the scalar action to be twisted by a ring homomorphism such as complex conjugation. In particular, this generalization unifies the concepts of linear and conjugate-linear maps. We implement this generalization in Lean's \textsf{mathlib} library, along with a number of important results in functional analysis which previously were impossible to formalize properly. Specifically, we prove the Fréchet--Riesz representation theorem and the spectral theorem for compact self-adjoint operators generically over real and complex Hilbert spaces. We also show that semilinear maps have applications beyond functional analysis by formalizing the one-dimensional case of a theorem of Dieudonné and Manin that classifies the isocrystals over an algebraically closed field with positive characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源