论文标题

迈向非concave采样理论:langevin monte carlo的一阶平稳性保证

Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo

论文作者

Balasubramanian, Krishnakumar, Chewi, Sinho, Erdogdu, Murat A., Salim, Adil, Zhang, Matthew

论文摘要

对于从$ \ Mathbb {r}^d $上的密度$π\ propto \ exp(-v)$进行取样的任务,其中$ v $可能是非convex,但$ l $ -lob-gradient Lipschitz,我们证明,我们证明,Langevin Monte carlo a Samplos a Sampam a Sampam a Sampam a Sampam a Sampam a Sampam a Sampam a pamplos a Sampam a pampame a pampame a pamplops $ \ varepsil $ -oy( d^2/\ varepsilon^2)$迭代。这是在非凸优化中找到$ \ varepsilon $ approximate的一阶固定点的复杂性界限的采样类似物,因此构成了迈向非concave采样的一般理论的第一步。我们讨论结果的许多扩展和应用;特别是,它为满足庞加莱不平等的分布提供了新的最新保证。

For the task of sampling from a density $π\propto \exp(-V)$ on $\mathbb{R}^d$, where $V$ is possibly non-convex but $L$-gradient Lipschitz, we prove that averaged Langevin Monte Carlo outputs a sample with $\varepsilon$-relative Fisher information after $O( L^2 d^2/\varepsilon^2)$ iterations. This is the sampling analogue of complexity bounds for finding an $\varepsilon$-approximate first-order stationary points in non-convex optimization and therefore constitutes a first step towards the general theory of non-log-concave sampling. We discuss numerous extensions and applications of our result; in particular, it yields a new state-of-the-art guarantee for sampling from distributions which satisfy a Poincaré inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源