论文标题

具有马尔可夫探索动力学的多机器人系统的特征分布的概率共识

Probabilistic Consensus on Feature Distribution for Multi-robot Systems with Markovian Exploration Dynamics

论文作者

Shirsat, Aniket, Mishra, Shatadal, Zhang, Wenlong, Berman, Spring

论文摘要

在本文中,我们提出了一种基于共识的分散的多机器人方法,用于重建以占用网格图为模型的特征分布,该特征分布代表包含有界平面2D环境中的信息,例如用于导航或与对象检测相关的语义标记的视觉提示。机器人根据由离散时间离散状态(DTDS)模拟的随机步行探索环境,并使用分布式Chernoff Fusion协议从其自己的测量值和相邻机器人传达的估计值中估算特征分布。我们证明,在这种分散的融合协议下,每个机器人的特征分布几乎可以肯定地收敛到地面真相分布。我们通过数值模拟来验证这一结果,这些模拟表明,估计的真相特征分布之间的地狱距离距离每个机器人的距离随着时间的推移会收敛到零。我们还通过对四个四面体的软件(SITL)模拟来验证我们的策略,该模拟搜索有界的正方形网格中的一组视觉特征,以分散在离散的圆圈上。

In this paper, we present a consensus-based decentralized multi-robot approach to reconstruct a discrete distribution of features, modeled as an occupancy grid map, that represent information contained in a bounded planar 2D environment, such as visual cues used for navigation or semantic labels associated with object detection. The robots explore the environment according to a random walk modeled by a discrete-time discrete-state (DTDS) Markov chain and estimate the feature distribution from their own measurements and the estimates communicated by neighboring robots, using a distributed Chernoff fusion protocol. We prove that under this decentralized fusion protocol, each robot's feature distribution converges to the ground truth distribution in an almost sure sense. We verify this result in numerical simulations that show that the Hellinger distance between the estimated and ground truth feature distributions converges to zero over time for each robot. We also validate our strategy through Software-In-The-Loop (SITL) simulations of quadrotors that search a bounded square grid for a set of visual features distributed on a discretized circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源