论文标题
兼容Hom-Lie代数的同时和变形
Cohomology and deformations of compatible Hom-Lie algebras
论文作者
论文摘要
在本文中,我们将兼容的Hom-Lie代数视为兼容的Lie代数的扭曲版本。兼容的hom-lie代数的特征是在合适的双差级lie代数中,莫拉尔 - 卡丹元素。我们还定义了一种兼容Hom-Lie代数的共同体学理论,概括了Liu,Sheng和Bai的最新作品。作为共同体的应用,我们研究了兼容Hom-Lie代数的Abelian扩展和变形。
In this paper, we consider compatible Hom-Lie algebras as a twisted version of compatible Lie algebras. Compatible Hom-Lie algebras are characterized as Maurer-Cartan elements in a suitable bidifferential graded Lie algebra. We also define a cohomology theory for compatible Hom-Lie algebras generalizing the recent work of Liu, Sheng and Bai. As applications of cohomology, we study abelian extensions and deformations of compatible Hom-Lie algebras.